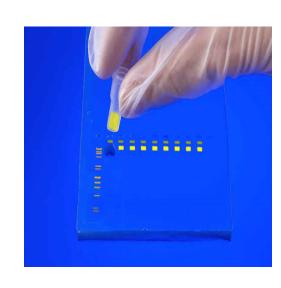
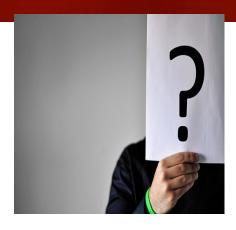
Restriction endonucleases and ligases

Mohamed N. Seleem


Big picture: Gene cloning

- From Gene to Protein
- Generally use bacteria as the "factory"



What we have done so far?

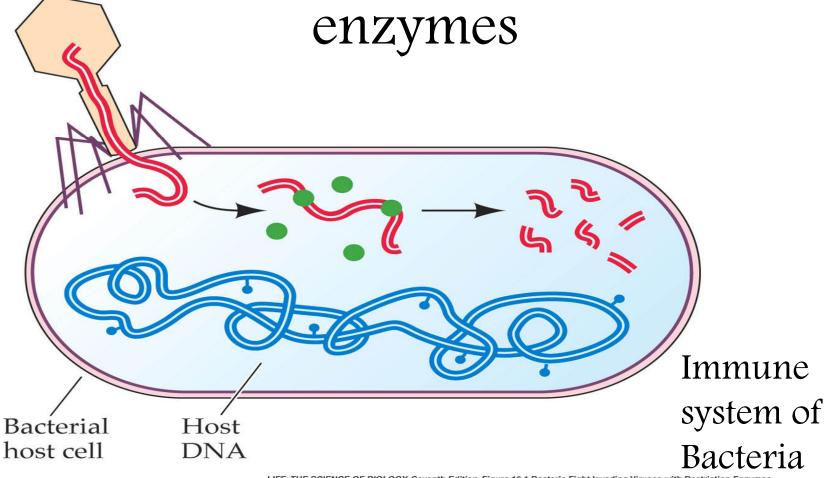
- Decide which gene to clone
- Designing primers
- PCR amplification (xx billions copies)
- Gel electrophoresis
- Cutting our gene from gel

What is next

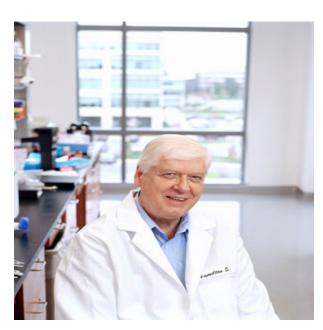
• Move my gene to the bacteria to purify protein as a final product.

Problem: Gene by itself does not go inside

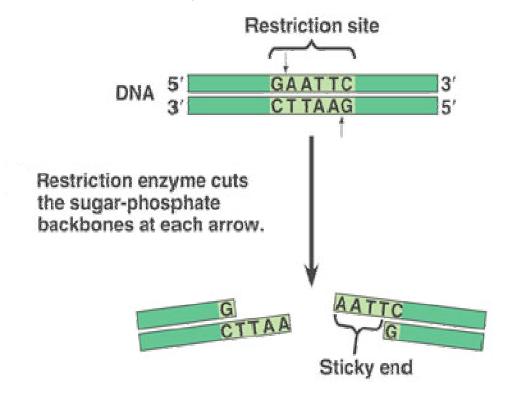
bacteria, it needs a carrier (vector or plasmid)


Cloning Tools

- Restriction endonucleases
- Ligase
- Vectors
- Host
- Methods for introducing DNA into a host cell


Restriction endonucleases enzymes

Haemophilus influenzae


To date well over 3000 diff REs to choose from, which were found from screening > 10000 bacteria

Hamilton Smith 1973 Nobel Prize

Cutting DNA

- Restriction endonucleases (restriction enzymes)
 - sticky ends
 - blunt ends
- Nomenclature
 - EcoRI
 - E = genus (Escherichia)
 - co = species (coh)
 - -R = strain
 - I = # of enzyme

Smal

Some restriction enzymes

Table 8.1		Properties of Some Restriction Enzymes				
	Enzyme	Bacterial Source	Restriction Site*			
	<i>Bam</i> Hl	Bacillus amyloliquefaciens H	G [↓] GATCC CCTAG _↑ G			
	<i>E</i> coRI	Escherichia coli RY13	G [↓] AATTC CTTAA _↑ G			
	EcoRII	E. coli R245	CC [↓] GG GG _↑ CC			
	<i>Hin</i> dll	Haemophilus influenzae Rd	GTPy [↓] PuAC CAPu _↑ PyTG			
	HindIII	H. influenzae Rd	A [↓] AGCTT TTCGA _↑ A			
	Hinfl	H. influenzae Rf	G [↓] ANTC CTNA _↑ G			
	Hpal	H. parainfluenzae	GTT [↓] AAC CAA _↑ TTG			
	<i>M</i> spl	<i>Moraxella</i> sp.	CC [↓] GG GG _↑ CC			

CCC[†]GGG

GGG₁CCC

- 100's of restriction enzymes (RE's) are commercially available
- Artificial RE sites can be inserted at ends of any gene
- RE's and ligase allow precise cutting and pasting of any DNA sequences

Serratia marcescens

^{*}Arrows indicate sites of cleavage; Py = pyrimidine (either T or C); Pu = purine (either A or G); N = Purine (either A or G); N = Purine (either A or C).

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

Which enzymes I should use

Pubmed

http://www.ncbi.nlm.nih.gov

Omp25 Brucella

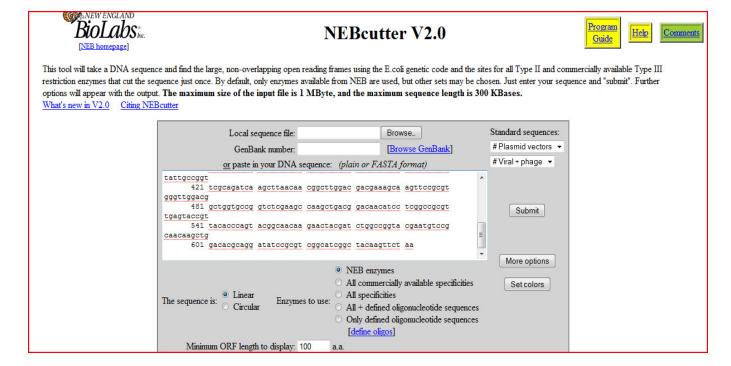
```
1..642
     gene
                     /gene="omp25"
     CDS
                     1..642
                     /gene="omp25"
                     /codon start=1
                     /product="outer membrane protein 25"
                     /protein id="CAQ68393.1"
                     /db xref="GI:206596726"
                     /db xref="GOA:B5U6Y0"
                     /db xref="InterPro:IPR011250"
                     /db xref="UniProtKB/TrEMBL:B5U6Y0"
                     translation="MRTLKSLVIVSAALLPFSATAFAADAIQEQPPVPAPVEVAPQYS/
                     WAGGYTGLYLGYGWNKAKTSTVGSIKPDDWKAGAFAGWNFQQDQIVYGVEGDAGYSWA
                     KKSKDGLEVKQGFEGSLRARVGYDLNPVMPYLTAGIAGSQIKLNNGLDDESKFRVGWT
                     AGAGLEAKLTDNILGRVEYRYTOYGNKNYDLAGTNVRNKLDTODIRVGIGYKF"
ORIGIN
        1 atgcgcactc ttaagtctct cgtaatcgtc tcggctgcgc tgctgccgtt ctctgcgacc
       61 gcttttgctg ccgacgccat ccaggaacag cctccggttc cggctccggt tgaagtagct
      121 ccccagtata gctgggctgg tggctatacc ggtctttacc tcggctacgg ctggaacaag
      181 gccaagacca gcaccgttgg cagcatcaag cctgacgatt ggaaggctgg cgcttttgct
      241 ggctggaact tccagcagga ccagatcgta tatggtgttg aaggtgatgc aggttattcc
      301 tgggccaaga agtccaagga cggcctggaa gtcaagcagg gctttgaagg ctcgctgcgt
      361 geoegegteg getacgaect gaacceggtt atgeegtace teacggetgg tattgeeggt
      421 togcagatca agottaacaa oggottggac gacgaaagca agttocgogt gggttggacg
      481 gctggtgccg gtctcgaagc caagctgacg gacaacatcc tcggccgcgt tgagtaccgt
      541 tacacccagt acggcaacaa gaactacgat ctggccggta cgaatgtccg caacaagctg
      601 gacacgcagg atatccgcgt cggcatcggc tacaagttct aa
```


NEBcutter V2.0

This tool will take a DNA sequence and find the large, non-overlapping open reading frames using the E.coli genetic code and the sites for all Type II and commercially available Typ restriction enzymes that cut the sequence just once. By default, only enzymes available from NEB are used, but other sets may be chosen. Just enter your sequence and "submit". Furt options will appear with the output. The maximum size of the input file is 1 MByte, and the maximum sequence length is 300 KBases.

What's new in V2.0 Citing NEBcutter

Local sequence file:			Browse		Standard sequences:
GenBank number			Browse Ge	nBank]	# Plasmid vectors ▼
or paste in your DNA	sequence:	(plain or FA	STA format)		# Viral + phage ▼
					Submit More options
The sequence is: Circular Enzy	nes to use:	All specificAll + defin	ercially availab cities ed oligonucleo ed oligonucleo	le specificities otide sequences otide sequences	Set colors
Minimum ORF length to display:	100 a	1.a.			


Copy and paste sequence

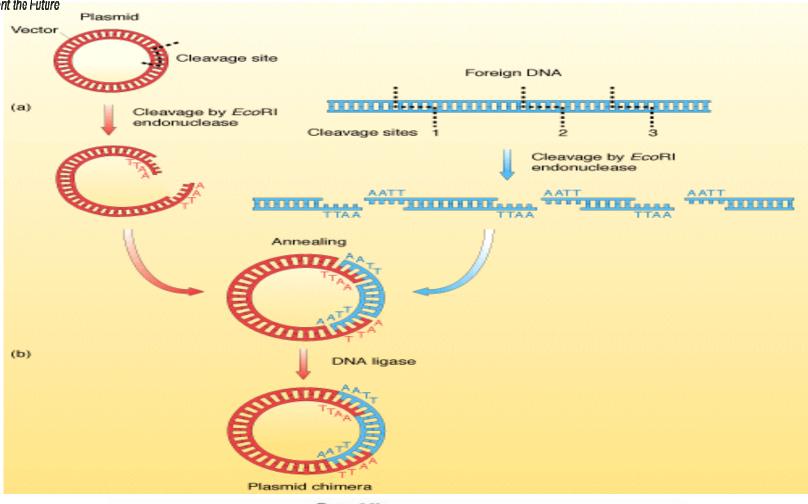
```
/db_xref="GOA:BSU6YO"
/db_xref="InterPro:IPR011250"
/db_xref="UniProtKB/TrEMBL:BSU6YO"
/translation="MRTLKSLVIVSAALLPFSATAFAADAIQEQPPVPAPVEVAPQYS
WAGGYTGLYLGYGWNKAKTSTVGSIKPDDWKAGAFAGWNFQQDQIVYGVEGDAGYSWA
KKSKDGLEVKQGFEGSLRARVGYDLNPVMPYLTAGIAGSQIKLNNGLDDESKFRVGWT
AGAGLEAKLTDNILGRVEYRYTQYGNKNYDLAGTNVRNKLDTQDIRVGIGYKF"

ORIGIN

1 atgcgcactc ttaagtctct cgtaatcgtc tcggctgcgc tgctgcgtt ctctgggacc
61 gctttgctg ccgacgccat ccaggacaag cctccggtt cggctccggt tgaagtagct
121 cccagtata gctgggctgg tggctatacc ggtctttacc tcggctacgg ctggaacaag
181 gccaagacca gcaccgttgg cagcatcaag cctgacgatt ggaaggctgg cgctttgct
241 ggctggaact tccagcagga ccagatcgta tatggtgttg aaggtgatgc aggttatcc
301 tgggccaaga agtccaaga cggctggaa gtcaagcagg gctttgaagg ctgctgggt
361 gcccgctcg gctacgact gaaccggtt atgccgtacc tcacggctgg tattgccgt
421 tcgcagatca agcttaacaa cggcttggac gacaaagca agttccgcgt gggttggacg
481 gctggtgccg gtctcgaagc caagctgacg gacaacatc tcggccggt tgagtaccgt
541 tacaccagt acggcacaa gacatacgat ctggccggta cgaatgtcg caacaagctg
601 gacacgagg atatccgcgt cggcatcaggc tacaagctg
4//
```

copy

paste

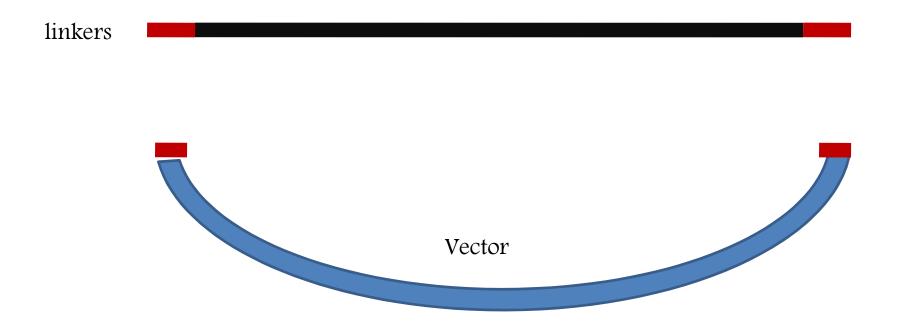


Restriction Map

Noucutters: Aarl, Aatll, Absl, Accl, Acll, Afilli, Ajul, Affl, Alol, AlwNi, Apal, Apali, Apol, Arsl, Ascl, Asuli, Aval, Avrii, Ball, BamHi, Barl, BbvCi, Bcgi, BciVi, Bcli, Bdal, Bgli, Bgli, Bpli, Bpu10i, BsaAi, BsaBi, BsaXi, BseMii, BsePi, BseRi, Bsgi, Bsmi, Bsp1407i, BspHi, BsrBi, BsrDi, BstEii, BstXi, BtgZi, Btri, Btsi, Clai, CspCi, Drali, Dralii, Drdi, Eam1105i, Ecil, Eco47iii, Eco57ii, Eco57Mi, EcoNi, EcoRi, Fsei, Gsui, Haeiv, Hin4i, Hindii, Hpai, Kpni, MauBi, Mboli, Mfei, Mlui, Msli, Naei, Nari, Ncoi, Ndei, Nhei, Noti, Nrui, Nspi, Olii, Paci, Pasi, PfiMi, Plei, PmaCi, Pmei, Ppii, PpuMi, PshAi, Psil, Pi-Pspi, Psti, Pvui, Pvuli, Rsrii, Saci, Sacii, Sali, SanDi, Sapi, Scai, Pi-Scei, SexAi, Sfii, Sgfi, SgrAi, SgrDi, Smai, SnaBi, Spei, Sphi, Srfi, Sse8387i, Sspi, Stui, Swai, Taqii, Tati, Tfii, Tsp45i, TspDTi, TspRi, Tth111i, Vspi, Xbai, Xhoi, Xhoii, Xmni

Name	Sequence	Site Length	Overhang	Frequency	Cut Positions
<u>EcoRV</u>	GATATC	6	blunt	1	612
<u>FspAI</u>	RTGCGCAY	8	blunt	1	4
<u>AcyI</u>	GRCGYC	6	five_prime	1	74
<u>AfIII</u>	CTTAAG	6	five_prime	1	10
<u>AgeI</u>	ACCGGT	6	five_prime	1	148
<u>AvaII</u>	GGWCC	5	five_prime	1	258
<u>BccI</u>	CCATC	5	five_prime	1	85
<u>BseYI</u>	CCCAGC	6	five_prime	1	131
<u>BspMI</u>	ACCTGC	6	five_prime	1	280
<u>Eco31I</u>	GGTCTC	6	five_prime	1	496
Esp3I	CGTCTC	6	five_prime	1	33
<u>FauI</u>	CCCGC	5	five_prime	1	370

GGATCC ATGCGCACTCTTAAGTCTCTCGTAATCGTCTCGGCTGCGCTGCCGTCCAGCACCGTTACAAGTTCTAAGGATCC
TACGCGTGAGAATTCAGAGAGCATTAGCAGAGCCGACGCGACGACGGCAGGTCGTGGCAATGTTCAAGATTCCTAGG


Put sequence of Non cutting enzymes at both ends of the gene

How? PCR and Primers


Gene

Adding sequence to the ends by PCR

Pasting DNA

- Complementary ends (sticky ends) H-bond
- Ligase forms phosphodiester bond to seal strands together.

How to chose your enzymes

- Non cutting enzymes
- Enzymes on Vector
- •Enzymes that work together (Double digest)
- Price
- Company (I highly recommend

Promega) Don't waste clean thinking on dirty enzymes Efraim Racker, Cornell University

How use your enzymes

•Ice

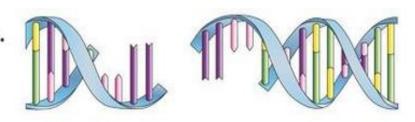
•No Vortex

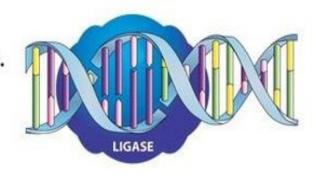
Enzyme

and

buffer

- •Set up reaction of 10 µl at least
- •1 μ l (10 units) enzyme 1 μ l 10xbuffer and 8 μ l DNA(you need 1 unit to cut 1 μ g of DNA)
- •Incubate (usually 37 °C for at least 1 hour)
- •Clean your DNA after cutting

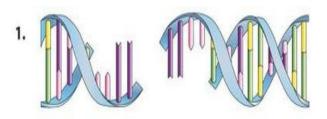

Joining DNA


Ligase enzyme

anneal two pieces of 2 compatible ends of

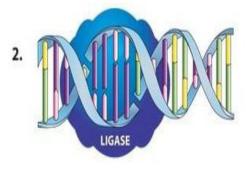
DNA together

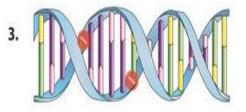
Repair Mechanism in biological system



How to join DNA

Get rid of restriction enzymes




1 μl (3 units) enzyme

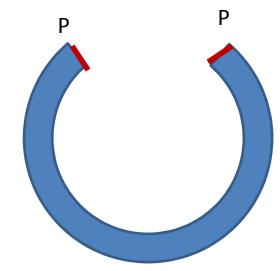
1 μl 10xbuffer

4 µl gene

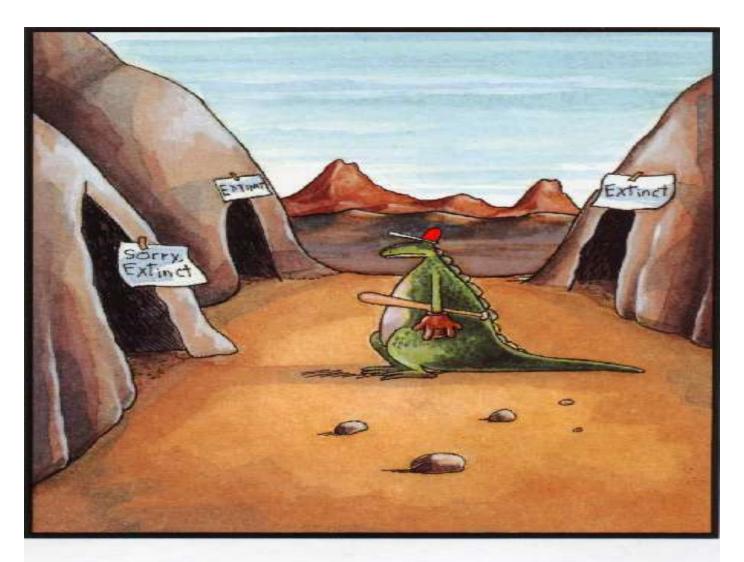
4 μl vector (plasmid)

Incubation ligation reaction

- •4 °C over night or 16 °C over night
- •25 °C 3 hours
- •TCL (temperature cycle ligations) Lund et al., 1996 99 cycles (1 min 30 ° C 1 min 10 ° C) 4 fold increase ligation
- •5 minutes ligation buffer (Polyethylene glycol PEG 6000)


How to check for successful ligation reaction

• Transformation and count number of good colonies


Alkaline phosphatase dephosphorylation

Removing phosphate group to prevent self ligation of the vector

Add it only to the vector

Questions!!!!

Suddenly, Bobby felt very alone in the world.